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Abstract
We investigate the two-dimensional magnetic Schrödinger operator HB,β =
(−i∇ − A)2 − βδ(· −	), where 	 is a smooth loop and the vector potential A
corresponds to a homogeneous magnetic field B perpendicular to the plane. The
asymptotics of negative eigenvalues of HB,β for β → ∞ is found. It shows,
in particular, that for large enough positive β the system exhibits persistent
currents.

PACS numbers: 73.23.Ra, 73.23.−b

1. Introduction

One of the most often studied features of mesoscopic systems is the persistent currents in
rings threaded by a magnetic flux—see, e.g., [CGR, CWB] and scores of other theoretical and
experimental papers where they were discussed. For a charged particle (an electron) confined
to a loop 	 the effect is manifested by the dependence of the corresponding eigenvalues λn on
the flux φ threading the loop, conventionally measured in the units of flux quanta, 2πh̄c|e|−1.
The derivative ∂λn/∂φ equals − 1

c
In, where In is the persistent current in the nth state. In

particular, if the particle motion on the loop is free, we have

λn(φ) = h̄2

2m∗

(
2π

L

)2

(n + φ)2 (1.1)

where L is the loop circumference and m∗ is the effective mass of the electron, so the currents
depend linearly on the applied field in this case.

Of course, the above example is idealized assuming that the particle is strictly confined to
the loop. In reality, boundaries of a quantum wire are potential jumps at interfaces of different
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materials. As a consequence, electrons can be found outside the loop, even if not too far when
we consider energies at which the exterior is a classically forbidden region.

A reasonable model respecting the essentially one-dimensional nature of quantum wires is
a 2D Schrödinger operator with an attractive δ-interaction on an appropriate curve 	, or more
generally, a planar graph. Since the interaction support has codimension one, the Hamiltonian
can be defined through its quadratic form and the corresponding resolvent can be written
explicitly as a generalization of the Birman–Schwinger theory [BT, BEKŠ]. This leads to
some interesting consequences such as the existence of bound states due to bending of an
infinite and asymptotically straight curve [EI].

A natural question is how such a model is related to the ideal one in which the electron is
strictly confined to the curve	. In [EY], we have derived an asymptotic formula showing that
if the δ-coupling is strong, the negative eigenvalues approach those of the ideal model in which
the geometry of 	 is taken into account by means of an effective curvature-induced potential.
The purpose of this paper is to ask a similar question in the situation when the electron is
subject to a homogeneous magnetic field B perpendicular to the plane. We are going to derive
an analogous asymptotic formula where now the presence of the magnetic field is taken into
account via the boundary conditions specifying the domain of the comparison operator.

An easy consequence of this result is that for a strong enough δ-interaction the negative
eigenvalues of our Hamiltonian are not constant as functions of B, i.e. that the system exhibits
persistent currents. Their further properties depend, of course, on the specific shape of 	; this
fact and the stability of such currents with respect to a disorder raise questions about optimal
ways of interpreting the corresponding magnetic transport. We comment on this point in the
concluding remarks.

2. Description of the model and the results

As we have explained above we are going to study the Schrödinger operator in L2(R2) with
a constant magnetic field and an attractive δ-interaction on a loop. For the sake of simplicity,
we employ rational units, h̄ = c = 2m∗ = 1, and absorb the electron charge into the field
intensity B. We shall use the circular gauge, A(x, y) = (− 1

2By,
1
2Bx

)
.

Let 	 : [0, L] 	 s 
→ (	1(s), 	2(s)) ∈ R
2 be a closed counter-clockwise C4 Jordan

curve which is parametrized by its arc length. Given β > 0 and B ∈ R, we define

qB,β[f ] = ∥∥(−i∂x + 1
2By

)
f

∥∥2
+

∥∥(−i∂y − 1
2Bx

)
f

∥∥2 − β

∫
	

|f (x)|2 ds

with the domain H 1(R2), where ∂x ≡ ∂/∂x etc, and the norm refers to L2(R2). It is
straightforward to check that the form qB,β is closed and below bounded. We denote by HB,β

the self-adjoint operator associated with it which can be formally written as

HB,β = (−i∇ − A)2 − βδ(· −	).

Our main aim is to study the asymptotic behaviour of the negative eigenvalues of HB,β as
β → +∞.

Let γ : [0, L] 	 s 
→ (	′′
1	

′
2 − 	′′

2	
′
1)(s) ∈ R be the signed curvature of 	. We denote

by � the region enclosed by 	, with the area |�|, and define the operator

SB = − d2

ds2
− 1

4
γ (s)2

on L2((0, L)) with the domain

PB = {
ϕ ∈ H 2((0, L)); ϕ(k)(L) = exp(−iB|�|)ϕ(k)(0), k = 0, 1

}
where ϕ(k) stands for the kth derivative.
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We fix j ∈ N and denote by µj(B) the j th eigenvalue of SB counted with multiplicity.
Our main result is the following claim.

Theorem 2.1. Let n be an arbitrary integer and let ∅ �= I ⊂ R be a compact interval. Then
there exists β(n, I) > 0 such that

&{σd(HB,β) ∩ (−∞, 0)} � n for β � β(n, I) and B ∈ I.

For β � β(n) and B ∈ I we denote by λn(B, β) the nth eigenvalue of HB,β counted with
multiplicity. Then λn(B, β) admits an asymptotic expansion of the form

λn(B, β) = − 1
4β

2 + µn(B) + O(β−1 lnβ) as β → +∞
where the error term is uniform with respect to B ∈ I .

Recall that the flux φ through the loop is B|�|/2π in our units. The existence of persistent
currents is then given by the following consequence of the above result.

Corollary 2.2. Let ∅ �= I ⊂ R be a compact interval and let n ∈ N. Then there exists a
constant β1(n, I) > 0 such that the function λn(·, β) is not constant for β � β1(n, I).

3. The proofs

Since the spectral properties of HB,β are clearly invariant with respect to Euclidean
transformation of the plane, we may assume without any loss of generality that the curve
	 parametrizes in the following way:

	1(s) = 	1(0) +
∫ s

0
cosH(t) dt 	2(s) = 	2(0) +

∫ s

0
sinH(t) dt

where H(t) := − ∫ t

0 γ (u) du. Let +a be the map

+a : [0, L)× (−a, a) 	 (s, u) 
→ (	1(s)− u	′
2(s), 	2(s)+ u	′

1(s)) ∈ R
2.

From [EY, lemma 2.1] we know that there exists a1 > 0 such that the map +a is injective for
all a ∈ (0, a1]. We thus fix a ∈ (0, a1) and denote by -a the strip of width 2a enclosing 	

-a := +a ([0, L)× (−a, a)) .

Then the set R
2\-a consists of two connected components which we denote by .in

a and .out
a ,

where the interior one, .in
a , is compact. We define a pair of quadratic forms,

q±
B,a,β[f ] = ∥∥(−i∂x + 1

2By
)
f

∥∥2

L2(-a)
+

∥∥(−i∂y − 1
2Bx

)
f

∥∥2

L2(-a)
− β

∫
	

|f (x)|2 ds

which are given by the same expression but differ by their domains; the latter is H 1
0 (-a) for

q+
B,a,β and H 1(-a) for q−

B,a,β . Furthermore, we introduce the quadratic forms

e
j,±
B,a[f ] = ∥∥(−i∂x + 1

2By
)
f

∥∥2

L2(.
j
a)

+
∥∥(−i∂y − 1

2Bx
)
f

∥∥2

L2(.
j
a)

for j = out, in, with the domains H 1
0

(
.

j
a

)
and H 1

(
.

j
a

)
corresponding to the ± sign,

respectively. Let L±
B,a,β , Eout,±

B,a and E
in,±
B,a be the self-adjoint operators associated with the

forms q±
B,a,β , eout,±

B,a and e
in,±
B,a , respectively.

As in [EY] we are going to use the Dirichlet–Neumann bracketing with additional
boundary conditions at the boundary of-a . It works in the magnetic case too as one can easily
see comparing the form domains of the involved operators, cf [RS, thm XIII.2]. We get

E
in,−
B,a ⊕ L−

B,a,β ⊕E
out,−
B,a � HB,β � E

in,+
B,a ⊕ L+

B,a,β ⊕ E
out,+
B,a (3.1)
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with the decomposed estimating operators in L2(R2) = L2
(
.in

a

) ⊕ L2(-a) ⊕ L2
(
.out

a

)
. In

order to assess the negative eigenvalues of HB,β , it suffices to consider those of L+
B,a,β and

L−
B,a,β , because the other operators involved in (3.1) are positive. Since the loop is smooth,

we can pass inside -a to the natural curvilinear coordinates; we state

(Uaf )(s, u) = (1 + uγ (s))1/2f (+a(s, u)) for f ∈ L2(-a)

which defines the unitary operator Ua from L2(-a) to L2((0, L) × (−a, a)). To express the
estimating operators in the new variables, we introduce

Q+
a = {ϕ ∈ H 1((0, L) × (−a, a)); ϕ(L, ·) = ϕ(0, ·) on (−a, a),

ϕ(·, a) = ϕ(·,−a) = 0 on (0, L)}
Q−

a = {ϕ ∈ H 1((0, L)× (−a, a)); ϕ(L, ·) = ϕ(0, ·) on (−a, a)}

and define the quadratic forms

b±
B,a,β[g] =

∫ L

0

∫ a

−a

(1 + uγ (s))−2 |∂sg|2 du ds +
∫ L

0

∫ a

−a

|∂ug|2 du ds

+
∫ L

0

∫ a

−a

V (s, u)|g|2 ds du − β

∫ L

0
|g(s, 0)|2 ds

− b±
2

∫ L

0

γ (s)

1 + aγ (s)
|g(s, a)|2 ds +

b±
2

∫ L

0

γ (s)

1 − aγ (s)
|g(s,−a)|2 ds

+
1

4

∫ L

0

∫ a

−a

B2
(
	2

1 − 2u	1	
′
2 + 	2

2 + 2u	2	
′
1 + u2

) |g|2 du ds

+B Im
∫ L

0

∫ a

−a

(	2 + u	′
1)

(
(1 + uγ )−1 cosHḡ∂sg − sinHḡ∂ug

)
du ds

−B Im
∫ L

0

∫ a

−a

(	1 − u	′
2)

(
(1 + uγ )−1 sinHḡ∂sg + cosHḡ∂ug

)
du ds

(3.2)

on Q±
a , respectively, where b+ = 0 and b− = 1, and

V (s, u) = 1
2 (1 + uγ (s))−3uγ ′′(s) − 5

4 (1 + uγ (s))−4u2γ ′(s)2 − 1
4 (1 + uγ (s))−2γ (s)2

is the well-known curvature-induced effective potential [EŠ]. Let D±
B,a,β be the self-adjoint

operators associated with the forms b±
B,a,β , respectively. In analogy with [EY, lemma 2.2], we

get the following result.

Lemma 3.1. U∗
a D

±
B,a,βUa = L±

B,a,β .

The presence of the magnetic field gave rise to terms containing ḡ∂sg and ḡ∂ug in (3.2). In
order to eliminate the corresponding coefficients modulo small errors, we employ another
unitary operator. We define

TB(s) = −1

2
B

∫ s

0
(	2(t)	

′
1(t) − 	′

2(t)	1(t)) dt .

It follows from the Green theorem that TB(L) = B|�|. Then we define

(MBh)(s, u) := exp
[
iTB(s) +

i

2
Bu (	2(s) sinH(s) + 	1(s) cosH(s))

]
h(s, u)
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for any h ∈ L2((0, L) × (−a, a)); it is straightforward to check that MB is a unitary operator
on L2((0, L)× (−a, a)). We define

Q̃+
B,a = {

ϕ ∈ H 1((0, L)× (−a, a)); ϕ(L, ·) = e−iB|�|ϕ(0, ·) on (−a, a),

ϕ(·, a) = ϕ(·,−a) = 0 on (0, L)
}

Q̃−
B,a = {

ϕ ∈ H 1((0, L)× (−a, a)); ϕ(L, ·) = e−iB|�|ϕ(0, ·) on (−a, a)
}

and another pair of quadratic forms

b̃
±
B,a,β[g] =

∫ L

0

∫ a

−a

{
(1 + uγ )−2|∂sg|2 + |∂ug|2 +

[
B(	2 + u	′

1)(1 + uγ )−1 cosH

−B(	1 − u	′
2)(1 + uγ )−1 sinH − B(1 + uγ )−2(	2 cosH − 	1 sinH)

+B(1 + uγ )−2(	2 sinH + 	1 cosH)′u
]

Im(ḡ∂sg) + WB(s, u)|g|2} du ds

− β

∫ L

0
|g(s, 0)|2 ds − b±

2

∫ L

0

γ (s)

1 + aγ (s)
|g(s, a)|2 ds

+
b±
2

∫ L

0

γ (s)

1 − aγ (s)
|g(s,−a)|2 ds

for g ∈ Q̃±
B,a , respectively, where

WB(s, u) = V (s, u) + 1
4 (1 + uγ )−2B2u2((	2 sinH + 	1 cosH)′)2

+ 1
4B

2
(
	2

1 − 2u	1	
′
2 + 	2

2 + 2u	2	
′
1 + u2

)
+B(	2 + u	′

1)(1 + uγ )−1T ′
B(s) cosH − B(	1 − u	′

2)(1 + uγ )−1T ′
B(s) sinH

+ 1
4 (1 + uγ )−2B2(	2 cosH − 	1 sinH)2 + 1

4B
2(	2 sinH + 	1 cosH)2

+
[
B(	2 + u	′

1)(1 + uγ )−1 cosH − B(	1 − u	′
2)(1 + uγ )−1 sinH

−B(1 + uγ )−2(	2 cosH − 	1 sinH)
]

1
2B(	2 sinH + 	1 cosH)′u

+ [−B(	2 + u	′
1) sinH − B(	1 − u	′

2) cosH ] 1
2B(	2 sinH + 	1 cosH).

Let D̃±
B,a,β be the self-adjoint operators associated with the forms b̃

±
B,a,β , respectively. By a

straightforward computation, one can check the following claim.

Lemma 3.2. M∗
BD

±
B,a,βMB = D̃±

B,a,β .

The next step is to estimate D̃±
B,a,β by operators with separated variables. Denoting

γ+: = max
[0,L]

|γ (·)|

we define

NB(a) := max
(s,u)∈[0,L]×[−a,a]

∣∣B(	2 + u	′
1)(1 + uγ )−1 cosH − B(	1 − u	′

2)(1 + uγ )−1 sinH

−B(1 + uγ )−2(	2 cosH − 	1 sinH) + B(1 + uγ )−2(	2 sinH + 	1 cosH)′u
∣∣

and

MB(a) := max
(s,u)∈[0,L]×[−a,a]

∣∣WB(s, u) + 1
4γ (s)

2
∣∣ .
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Let ∅ �= I ⊂ R be a compact interval. Then there is a positive K such that

NB(a) + MB(a) � Ka for 0 < a <
1

2γ+
and B ∈ I

where K is independent of a and B. For a fixed 0 < a < 1
2γ+

, we define

b̂
±
B,a,β[f ] =

∫ L

0

∫ a

−a

{[
(1 ∓ aγ+)

−2 ± 1
2NB(a)

]|∂sf |2 + |∂uf |2

+
[− 1

4γ (s)
2 ± 1

2NB(a)± MB(a)
]|f |2} du ds

− β

∫ L

0
|f (s, 0)|2 ds − γ+b±

∫ L

0
(|f (s, a)|2 + |f (s,−a)|2) ds

for f ∈ Q̃±
B,a , respectively. Since |Im(ḡ∂sg)| � 1

2

(|g|2 + |∂sg|2), we obtain

b̃
+
B,a,β[f ] � b̂

+
B,a,β[f ] for f ∈ Q̃+

B,a (3.3)

b̂
−
B,a,β[f ] � b̃

−
B,a,β[f ] for f ∈ Q̃−

B,a. (3.4)

Let Ĥ±
B,a,β be the self-adjoint operators associated with the forms b̂

±
B,a,β , respectively.

Furthermore, let T +
a,β be the self-adjoint operator associated with the form

t+
a,β[f ] =

∫ a

−a

|f ′(u)|2 ds − β|f (0)|2 f ∈ H 1
0 ((−a, a))

and similarly, let T −
a,β be the self-adjoint operator associated with the form

t−a,β[f ] =
∫ a

−a

|f ′(u)|2 ds − β|f (0)|2 − γ+(|f (a)|2 + |f (−a)|2) f ∈ H 1((−a, a)).

We define

U±
B,a = −

[
(1 ∓ aγ+)

−2 ± 1

2
NB(a)

]
d2

ds2
− 1

4
γ (s)2 ± 1

2
NB(a)± MB(a)

in L2((0, L)) with the domain PB specified in the previous section. Then we have

Ĥ±
B,a,β = U±

B,a ⊗ 1 + 1 ⊗ T ±
a,β . (3.5)

Let µ±
j (B, a) be the j th eigenvalue of U±

B,a counted with multiplicity. We shall prove the
following estimate.

Proposition 3.3. Let j ∈ N. Then there exists C(j) > 0 such that

|µ+
j (B, a)− µj(B)| + |µ−

j (B, a)− µj (B)| � C(j)a

holds for B ∈ I and 0 < a < 1
2γ+

, where C(j) is independent of B and a.

Proof. Since

U+
B,a −

[
(1 − aγ+)

−2 +
1

2
NB(a)

]
SB

= 1

4

[
aγ+(2 − aγ+)

(1 − aγ+)2
+

1

2
NB(a)

]
γ (s)2 +

1

2
NB(a) + MB(a)

and since NB(a) + MB(a) � Ka for 0 < a < 1
2γ+

and B ∈ I , we infer that there is a constant
C1 > 0 such that∥∥U+

B,a − [
(1 − aγ+)

−2 + 1
2NB(a)

]
SB

∥∥ � C1a
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for 0 < a < 1
2γ+

and B ∈ I . This together with the min–max principle implies that∣∣µ+
j (B, a)− [

(1 − aγ+)
−2 + 1

2NB(a)
]
µj(B)

∣∣ � C1a

for 0 < a < 1
2γ+

and B ∈ I . Since µj(·) is continuous, we claim that there exists a constant
C2 > 0 such that

|µ+
j (B, a)− µj(B)| � C2a

for 0 < a < 1
2γ+

and B ∈ I . In a similar way, we infer the existence of a constant C3 > 0
such that

|µ−
j (B, a)− µj (B)| � C3a

for 0 < a < 1
2γ+

and B ∈ I . �

We also recall the following result from [EY].

Proposition 3.4. (a) Suppose that βa > 8
3 . Then T +

a,β has only one negative eigenvalue, which
we denote by ζ +

a,β . It satisfies the inequalities

− 1
4β

2 < ζ +
a,β < − 1

4β
2 + 2β2 exp

(− 1
2βa

)
.

(b) Let aβ > 8 and β > 8
3γ+. Then T −

a,β has a unique negative eigenvalue ζ−
a,β , and moreover,

we have

− 1
4β

2 − 2205
16 β2 exp

(− 1
2βa

)
< ζ−

a,β < − 1
4β

2.

Proof of theorem 2.1. We put a(β) = 6β−1 lnβ. Let ξ±
β,j be the j th eigenvalue of T ±

a(β),β , by
proposition 3.4 we have

ξ±
β,1 = ζ±

a(β),β ξ±
β,2 � 0.

From the decompositions (3.5) we infer that {ξ±
β,j + µ±

k (B, a(β))}j,k∈N, properly ordered, is

the sequence of the eigenvalues of Ĥ±
B,a(β),β counted with multiplicity. Proposition 3.3 gives

ξ±
β,j + µk(B, a(β)) � µ±

1 (B, a(β)) = µ1(B) + O(β−1 ln β) (3.6)

for B ∈ I , j � 2, and k � 1, where the error term is uniform with respect to B ∈ I . For a
fixed j ∈ N, we put

τ±
B,β,j = ζ±

a(β),β + µ±
j (B, a(β)).

Combining propositions 3.3 and 3.4 we get

τ±
B,β,j = − 1

4β
2 + µj(B) + O(β−1 lnβ) as β → ∞ (3.7)

where the error term is uniform with respect to B ∈ I . Let us fix now n ∈ N. Combining
(3.6) with (3.7) we infer that there exists β(n, I) > 0 such that the inequalities

τ +
B,β,n < 0 τ +

B,β,n < ξ+
β,j + µ+

k (B, a(β)) τ−
B,β,n < ξ−

β,j + µ−
k (B, a(β))

hold for B ∈ I , β � β(n, I), j � 2 and k � 1. Hence the j th eigenvalue of Ĥ±
B,a(β),β counted

with multiplicity is τ±
B,β,j for B ∈ I , j � n and β � β(n, I). Let B ∈ I and β � β(n, I). We

denote by κ±
j (B, β) the j th eigenvalue of L±

B,a,β . Combining our basic estimate (3.1) with
lemmas 3.1 and 3.2, relations (3.3) and (3.4), and the min–max principle, we arrive at the
inequalities

τ−
B,β,j � κ−

j (B, β) and κ+
j (B, β) � τ +

B,β,j for 1 � j � n. (3.8)
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So we have κ+
n (B, β) < 0 < inf σess(HB,β). Hence the min–max principle and (3.1) imply

that HB,β has at least n eigenvalues in (−∞, κ+
n (B, β)]. Given 1 � j � n, we denote by

λj (B, β) the j th eigenvalue of HB,β . It satisfies

κ−
j (B, β) � λj (B, β) � κ+

j (B, β) for 1 � j � n.

This together with (3.7) and (3.8) implies that

λj (B, β) = − 1
4β

2 + µj(B) + O(β−1 lnβ) as β → ∞ for 1 � j � n

where the error term is uniform with respect to B ∈ I . This completes the proof. �
Proof of corollary 2.2. By [RS, theorem XIII.89] no eigenvalue µn(·) is constant on I. This
together with theorem 2.1 yields the claim. �

4. Concluding remarks

The above corollary answers the question we posed in the introduction as a mathematical
problem showing that a ring with a strong enough attractive δ-interaction does exhibit persistent
currents. On the other hand, from the physical point of view it would be bold to identify a
mere non-constantness of the eigenvalues with a genuine magnetic transport around the loop.

The problem is similar to other situations where an electron can be transported in a
magnetic field due to the presence of a ‘guiding’ perturbation. A prime example is the edge
currents [Ha, MS] which attracted a wave of mathematical interest recently in connection with
the problem of stability of the transport with respect to perturbations. In the case of a single
edge and a weak disorder, a part of the absolutely continuous spectrum survives [BP, FGW,
MMP] but the fact itself gives no quantitative information about the transport. On the other
hand, a system with more than one edge may have no continuous spectrum at all and still it
has states in which electrons travel distances much larger than the corresponding cyclotron
radius [FM].

In our case it is clear, for instance, that the loop geometry influences the transport
substantially. If 	 is a circle, for example, then up to the O(β−1 ln β) error the persistent-
current plot will have the ideal saw-tooth shape as we can see from relation (1.1); one expects
that the eigenfunctions will be ‘spread’ around the whole circle. In contrast, if the loop is rather
‘wiggly’ the one-dimensional comparison operator SB contains an irregular effective potential
coming from the rapidly varying curvature, which may cause—depending on the strength of
such a ‘disorder’—that the most part of the electron wavefunction will be concentrated in (the
vicinity of) a part of the loop only. The same may happen if the loop curvature slowly changes
but a disorder potential is added to the Hamiltonian.

To distinguish the situations with a significant transport, one needs clearly to understand
better the sketched ‘disordered’ cases which do not fall into this category. We leave this
problem to a future publication.

Acknowledgments

The research has been partially supported by GAAS and the Czech Ministry of Education
within the projects A1048101 and ME170.

References
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